113 research outputs found

    Properties of small HTSC mesa structures: common problems of interlayer tunneling

    Full text link
    I analyze common problems of interlayer tunneling in Bi-2212 mesa structures, such as self-heating and nonuniformity of junctions. Numerical simulations have shown that self-heating does not mask the temperature dependence of the superconducting gap. Major problems can be avoided by decreasing mesa sizes.Comment: 3 pages, 4 figures, presentation at EUCAS-2001 (Copenhagen, August 2001) Subm. to Physica

    Stacked Josephson junction SQUID

    Full text link
    Operation of a Superconducting Quantum Interference Device (SQUID) made of stacked Josephson junctions is analyzed numerically for a variety of junction parameters. Due to a magnetic coupling of junctions in the stack, such a SQUID has certain advantages as compared to an uncoupled multi-junction SQUID. Namely, metastability of current-flux modulation can be reduced and a voltage-flux modulation can be improved if junctions in the stack are phase-locked. Optimum operation of the SQUID is expected for moderately long, strongly coupled stacked Josephson junctions. A possibility of making a stacked Josephson junction SQUID based on intrinsic Josephson junctions in high-Tc superconductor is discussed.Comment: 4 pages, 3 figures, presented at SQUID-2001 (Stenungsbaden September 2001

    In-plane fluxon in layered superconductors with arbitrary number of layers

    Full text link
    I derive an approximate analytic solution for the in-plane vortex (fluxon) in layered superconductors and stacked Josephson junctions (SJJ's) with arbitrary number of layers. The validity of the solution is verified by numerical simulation. It is shown that in SJJ's with large number of thin layers, phase/current and magnetic field of the fluxon are decoupled from each other. The variation of phase/current is confined within the Josephson penetration depth, λJ\lambda_J, along the layers, while magnetic field decays at the effective London penetration depth, λc≫λJ\lambda_c \gg \lambda_J. For comparison with real high-TcT_c superconducting samples, large scale numerical simulations with up to 600 SJJ's and with in-plane length up to 4000 λJ\lambda_J%, are presented. It is shown, that the most striking feature of the fluxon is a Josephson core, manifesting itself as a sharp peak in magnetic induction at the fluxon center.Comment: 4 pages, 4 figures. Was presented in part at the First Euroconference on Vortex Matter in Superconductors (Crete, September 1999

    The shape of a moving fluxon in stacked Josephson junctions

    Full text link
    We study numerically and analytically the shape of a single fluxon moving in a double stacked Josephson junctions (SJJ's) for various junction parameters. We show that the fluxon in a double SJJ's consists of two components, which are characterized by different Swihart velocities and Josephson penetration depths. The weight coefficients of the two components depend on the parameters of the junctions and the velocity of the fluxon. It is shown that the fluxon in SJJ's may have an unusual shape with an inverted magnetic field in the second junction when the velocity of the fluxon is approaching the lower Swihart velocity. Finally, we study the influence of fluxon shape on flux-flow current-voltage characteristics and analyze the spectrum of Cherenkov radiation for fluxon velocity above the lower Swihart velocity. Analytic expression for the wavelength of Cherenkov radiation is derived.Comment: 12 pages, 12 figure

    Intrinsic tunneling spectroscopy: A look from the inside at HTSC

    Full text link
    Layered structure of Bi-2212 high TcT_c superconductor (HTSC), provides a unique opportunity to probe quasiparticle density of states inside a bulk single crystal by means of intrinsic (interlayer) tunneling spectroscopy. Here I present a systematic study of intrinsic tunneling characteristics of Bi-2212 as a function of doping, temperature, magnetic field and intercalation. An improved resolution made it possible to simultaneously trace the superconducting gap (SG) and the normal state pseudo-gap (PG) in a close vicinity of TcT_c and to analyze closing of the PG at T∗T^*. The obtained doping phase diagram exhibits a critical doping point for appearance of the PG and a characteristic crossing of the SG and the PG close to the optimal doping. All this points towards coexistence of two different and competing order parameters in Bi-2212.Comment: 4 pages, 5 figures, Presentation at M2S-Rio (May 2003), Subm. to Physica C. Note: A discussion of magnetic field dependencies is adde

    Interlayer tunneling spectroscopy of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}: a look from inside on the doping phase diagram of high TcT_c superconductors

    Full text link
    A systematic, doping dependent interlayer tunneling spectroscopy of Bi2212 high TcT_c superconductor is presented. An improved resolution made it possible to simultaneously trace the superconducting gap (SG) and the normal state pseudo-gap (PG) in a close vicinity of TcT_c and to analyze closing of the PG at T∗T^*. The obtained doping phase diagram exhibits a critical doping point for appearance of the PG and a characteristic crossing of the SG and the PG close to the optimal doping. This points towards coexistence of two different and competing order parameters in Bi2212. Experimental data indicate that the SG can form a combined (large) gap with the PG at T<TcT<T_c and that the interlayer tunneling becomes progressively incoherent with decreasing doping.Comment: 5 pages, 5 figure

    Single fluxon in double stacked Josephson junctions: Analytic solution

    Full text link
    We derive an approximate analytic solution for a single fluxon in a double stacked Josephson junctions (SJJ's) for arbitrary junction parameters and coupling strengths. It is shown that the fluxon in a double SJJ's can be characterized by two components, with different Swihart velocities and Josephson penetration depths. Using the perturbation theory we find the second order correction to the solution and analyze its accuracy. Comparison with direct numerical simulations shows a quantitative agreement between exact and approximate analytic solutions. It is shown that due to the presence of two components, the fluxon in SJJ's may have an unusual shape with an inverted magnetic field in the second junction when the velocity of the fluxon is approaching the lower Swihart velocity.Comment: 4 pages, 3 figure

    Magnetic field dependence of the critical current in stacked Josephson junctions. Evidence for fluxon modes in Bi2Sr2CaCu2O8+x mesas

    Full text link
    Modulation of the critical current across layers, Ic(H), of stacked Josephson junctions (SJJs) as a function of an applied magnetic field parallel to the junction planes is studied theoretically and experimentally for different junction lengths and coupling parameters. It is shown that the Ic(H) patterns of long SJJs are very complicated without periodicity in H. This is due to interaction between junctions in the stack. This, in turn, gives rise to the existence of multiple quasi-equilibrium Josephson fluxon modes and submodes which are different with respect to the symmetry of the phase and the fluxon sequence in SJJs. The critical current of long SJJs is multiple valued and is governed by switching between energetically close fluxon modes/submodes. Due to this, the probability distribution of the critical current may become wide and may consist of multiple maxima each representing a particular mode/submode. Experimentally, multiple branched Ic(H) patterns and multiple maxima in the Ic probability distribution were observed for Bi2Sr2CaCu2O8+x intrinsic SJJs, which are in a good agreement with numerical simulations and support the idea of having different quasi-equilibrium fluxon modes/submodes in intrinsic SJJs.Comment: 5 pages, 5 figure

    Planar SFS Josephson Junctions Made by Focused Ion Beam Etching

    Full text link
    Superconductor-Ferromagnet-Superconductor (S-F-S) Josephson junctions were fabricated by making a narrow cut through a S-F double layer using direct writing by Focused Ion Beam (FIB). Due to a high resolution (spot size smaller than 10 nm) of FIB, junctions with a small separation between superconducting electrodes (≤\leq 30 nm) can be made. Such a short distance is sufficient for achieving a considerable proximity coupling through a diluted CuNi ferromagnet. We have successfully fabricated and studied S-F-S (Nb-CuNi-Nb) and S-S'-S (Nb-Nb/CuNi-Nb) junctions. Junctions exhibit clear Fraunhofer modulation of the critical current as a function of magnetic field, indicating good uniformity of the cut. By changing the depth of the cut, junctions with the IcRnI_c R_n product ranging from 0.5 mV to ∼1μ\sim 1\mu V were fabricated.Comment: 5 pages, 5 figures, presentation at EUCAS-2003, to be published in Physica
    • …
    corecore